Naves espaciais alimentadas por fusão: tecnologia é testada com sucesso

Concepção artística da nave impulsionada por fusão
Concepção artística da nave impulsionada por fusão
Pesquisadores da Universidade de Washington (EUA) estão construindo componentes de uma espaçonave alimentada por fusão, o que poderia permitir que os astronautas viajassem para Marte em semanas em vez de meses, a velocidades consideravelmente mais rápidas do que as possíveis hoje.
À velocidade de deslocação atual, usando a tecnologia de foguetes de combustível, leva-se meio ano para completar uma jornada a Marte. A nova técnica de fusão promete uma viagem completa em 30 a 90 dias.
Os testes de laboratório com a tecnologia foram bem sucedidos até agora, e os cientistas estão planejando combinar as secções do processo em um único teste final e global em breve.

A técnica

O dispositivo de fusão testado irá consumir energia sob a forma de eletricidade, e não produzi-la, como outros dispositivos de fusão sendo pesquisados estão tentando conseguir.
A equipe afirma ter desenvolvido uma tecnologia de utilização de um tipo especial de plasma que será revestido de um campo magnético. Quando o plasma é comprimido à alta pressão pelo campo magnético, a fusão nuclear ocorre.
Na prática, o poderoso campo magnético circunda anéis de metal que contêm o plasma, e faz com que eles implodam e comprimam até ao ponto de fusão. O processo leva apenas alguns microssegundos, mas é o bastante para liberar calor suficiente e ionizar os anéis que formam um escudo em torno do plasma.
O metal superaquecido ionizado, por sua vez, é ejetado para fora do foguete a uma alta velocidade, empurrando-o para a frente. Repetir tal processo em intervalos de cerca de 30 segundos ou mais pode impulsionar uma nave espacial.
O laboratório onde os cientistas conduzem os experimentos está coberto, de parede a parede, com capacitores azuis que prendem a energia, cada um funcionando como uma bateria de alta tensão. Os capacitores são ligados a um ímã gigante, que abriga a câmara onde a reação de fusão terá lugar. Com o toque de um botão, os capacitores são simultaneamente acionados para liberar um milhão de ampères de eletricidade em uma fração de segundo para o ímã, que rapidamente comprime o anel de metal. O processo mecânico e equipamentos utilizados são razoavelmente simples.
fusion-driven-rocket-test-chamber-at-the-uw-plasma-dynamics-lab-in-redmond-the-green-vacuum-chamber-is-surrounded-by-two-large-high-strength-aluminum-magnets
Em uma viagem espacial real, os cientistas usariam o lítio metálico para dar poder ao foguete. Para os propósitos do laboratório de testes, o alumínio funciona tão bem quanto, portanto foi o metal de escolha.
Vários testes já foram realizados com sucesso no laboratório. Agora, a chave é combinar cada teste isolado em uma experiência final que produzirá a fusão. Os cientistas querem fazer este primeiro teste completo até o final do verão do hemisfério norte (setembro).

Sem explosão

A fusão nuclear pode levantar preocupações devido a sua aplicação em bombas nucleares, mas o seu uso neste cenário é muito diferente, de acordo com os pesquisadores.
A energia de fusão para alimentar um foguete seria reduzida por um fator de um bilhão em comparação a uma bomba de hidrogênio, o que é muito pouco para criar uma explosão significativa.
Além disso, o conceito usa um campo magnético forte para conter o combustível de fusão e orientá-lo com segurança para longe da nave e dos passageiros dentro dela.

Futuro brilhante

O método é muito eficiente para conduzir uma nave, uma vez que a taxa de impulso é muito mais elevada do que com motores convencionais. Também é superior à tecnologia de íons, que utiliza unidades de energia elétrica a fim de acelerar o combustível utilizado para gerar o impulso.
Na prática, o material de fusão utilizado como combustível consumível ejetado teria uma massa de quilogramas em vez de toneladas, por exemplo, um fator 1.000 vezes menor do que o combustível de foguete – o número exato dependerá do desenho final do dispositivo. Essa leveza e praticidade o tornarão muito mais ideal para uma viagem longa.
A pesquisa foi financiada pela NASA (agraciada entre diversos projetos premiados selecionados entre mais de 700 propostas), na esperança de que a tecnologia substitua o combustível de foguetes e naves espaciais e renda muito mais. Apenas um grão do material que forma o plasma pode equivaler a litros de combustível de foguete.
A massa total de uma nave espacial, incluindo o combustível necessário, poderia, assim, tornar-se consideravelmente menor, tornando a viagem ao espaço profundo muito mais rentável.
"Com os combustíveis de foguetes existentes, é quase impossível para os seres humanos explorar muito além da Terra", disse o pesquisador John Slough, professor associado de aeronáutica e astronáutica da Universidade de Washington. "Nós queremos oferecer uma fonte muito mais poderosa de energia que poderia eventualmente tornar viagens interplanetárias comuns".[SWRPhysBreatheCast]
1-rocketpowere

Nenhum comentário:

Postar um comentário

EM DESTAQUE

PRODUÇÃO DO MORGAN "EV3" ARRANCA NO TERCEIRO TRIMESTRE.

  A Morgan anunciou uma parceria técnica com a Frazer-Nash Energy Systems, com vista à produção do seu EV3.   A visão da Morgan para o mundo...

POSTAGENS MAIS ACESSADAS